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The generation of currents in toroidal plasma by application of waves in the lower hybrid 
frequency range involves the interplay of several physical phenomena which include: wave 
propagation in toroidal geometry, absorption via wave-particle resonances, the quasilinear 
generation of strongly nonequilibrium electron and ion distribution functions, and the self- 
consistent evolution of the current density in such a nonequilibrium plasma. We describe a 
code, LHMOD, which we have developed to treat these aspects of current drive and heating 
in tokamaks. We present results obtained by applying the code to a computation of current 
ramp-up and to an investigation of the possible importance of minority hydrogen absorption 
in a deuterium plasma as the “density limit” to current drive is approached. ‘i ’ I987 Academic 

Presr. 1°C 

I. INTRODUCTION 

Fisch’s theoretical proposal [l] that distortions in the electron distribution 
function driven by externally injected waves could be used to sustain current in a 
laboratory plasma, and the subsequent encouraging experimental observation of 
this effect [24], have motivated substantial additional theoretical and experimen- 
tal effort. Indeed, a steady-state tokamak reactor [S, 61 becomes a possibility if 
inductive current drive is supplanted by radio frequency (rf) current drive. 

Because the particle distribution functions in an rf-driven plasma are strongly dis- 
torted from a Maxwellian shape, the near-equilibrium assumption which forms the 
basis for the description employed in transport modeling codes is inappropriate. A 
quantitative description requires incorporation of kinetic effects. One recent 
approach [7] is to construct a constitutive relation between the (time-dependent) 
current density and the inductive electric field, which is modified from the simple 
linear relation I: = nj by the velocity space flux due to an (assumed known) wave 
spectrum. An alternative approach [S] in which a reduced (model) kinetic equation 
is solved, together with evolution equations for the wave spectrum and for the 
current density, is described here. This approach is similar in many respects to that 
employed by Bonoli and coworkers at MIT [9]. 

* Presenl Address: University of California, Lawrence Livermore National Laboratory, P.0. Box 808, 
Livermore, California 94550. 

341 
OO21-9991/87 $3.00 

Copyright 0 1987 by Academic Press, Inc 
All rights of reproductmn m any lorm reserved. 



342 VALEo AND EDER 

The overall structure of our code, LHMOD, is described in Section II. In Sec- 
tions IIIIV the principal modules are described in some detail. Two applications of 
the code are described in Section VI. The first is a study of current ramp-up in a 
plasma of sufficiently low density so that the lower hybrid (LH) resonance fre- 
quency, urn, is everywhere much less than (u,r, the frequency of the applied rf. The 
second focusses on the role of minority hydrogen absorption in a deuterium plasma 
as the density is raised and ctiLH + w,r at the plasma center. The results suggest that 
minority hydrogen ion absorption could play a role in determining the observed 
“density limit” to current drive. 

II. FRAMEWORK OF THE MODELING CODE 

The code LHMOD consists of three strongly coupled modules which deal with 
the physical processes of 

(1) wave propagation and absorption, 

(2) computation of the electron and ion distribution functions, 

(3) evolution of the plasma current. 

These modules are described in detail in Sections 111-V. Here we briefly discuss 
the overall structure and the strongly interrelated nature of the computations. 

Wave propagation is described by the warm plasma, fully electromagnetic ray 
equations. Energy deposition and current drive occur principally through the 
resonant wave-particle interaction. The resonant electron interaction is with the 
parallel wave electric field and the ion interaction is with the perpendicular wave 
electric field. The quasilinear approximation is assumed to describe adequately the 
interaction in both cases. 

If the wave amplitudes were sufficiently weak so that the particle distribution 
functions maintained their Maxwellian shape, then the damping calculations would 
be trivial. However, under conditions of significant heating or current drive, the 
Coulomb collisional relaxation toward a Maxwellian is completely dominated by 
the wave-driven quasilinear diffusion. The local velocity space gradient V,.f, which 
determines the damping decrement, consequently depends on the entire wave spec- 
trum. One is therefore led to introduce additional equations for the evolution of the 
electron and ion velocity distribution functions which are to be solved on a par 
with the wave equations. 

Consideration of even the relatively simple case in which the inductive electric 
field vanishes (“steady state”) illustrates how tightly coupled these calculations are. 
Since the time for a wave packet to convect radially inward is much shorter than 
the transport time scale, one is led to a solution of the steady-state ray equations to 
describe propagation and absorption wherein length along each ray assumes the 
role of a time-like variable. One finds that the rays are reflected radially at both 
small and large minor radiaus. As shown below, the flux averaged wave energy den- 
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sity versus wave vector determines the incremental absorption at each flux surface. 
If absorption of the power convected along a ray is incomplete on the first radial 
transit of the plasma, as is generally true, then the spectral intensity at any flux sur- 
face contains contributions from each of several intersections of such rays with that 
surface. Under these conditions, the spatial evolution of the power no longer 
depends causally on length along that ray, i.e., it depends on the power remaining 
during subsequent radial excursions (“bounces”). One is therefore forced to an 
iterative technique to find steady solutions of the coupled set of wave and kinetic 
equations. 

The situation becomes more complicated still if the poloidal flux is allowed to 
evolve. The difficulty here is that the inductive electric field is determined locally at 
each radius by the constraint that, for times short compared to the L/R time for the 
plasma, the current density is conserved. This constraint is enforceable only upon 
solution of the electron kinetic equation and direct computation of j,, . We are thus 
led to a second iteration process, this time to determine &[j(r, t)] and the 
associated nonlinear conductivity, i3j/M, which appears in the flux diffusion 
equation. 

III. WAVE PROPAGATION AND ABSORPTION 

Because their wavelength is small compared to characteristic gradient scale 
lengths in tokamaks, the propagation of lower hybrid waves is well described by the 
ray approximation. We briefly review the underlying theory, partially for the pur- 
pose of introducing notation and definitions required later. Assuming weak 
inhomogeneity and strict time independence of the plasma medium, we introduce 
the eikonal representation 

(1) 

for the time and space variation of field amplitudes with frequency (I) and local 
wave vector k. 

The plasma dielectric tensor K relates the plasma current J and the displacement 
vector D to the wave electric field as follows 

D=K-E=E+;J. 

The general expression for K in a hot, magnetized plasma [lo] simplifies enor- 
mously in the lower hybrid range if one makes use of the well-satisfied inequalities 

O<Q2,, k,,o,< 1, (3a) 

0 ’ Q,,,, k,P,,j> 1. (3b) 
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Here QL, is the gyrofrequency of the electrons and Q,,, is that of thejth ion species. 
The p’s are the respective gyroradii. The set of inequalities Eq. (3b), together with 
the invokation of a mechanism which randomizes the wave phase as seen by the 
plasma ions [ 131 allows the use of the approximation B + 0 in the calculation of 
the ion response. If, as we assume, the waves have sufficiently large phase speed 
both along and across the magnetic field, i.e., o/k,,~,~ and (11/k L u,; are sufficiently 
large, then the dielectric tensor is almost Hermitian, K = K,, and the contribution 
of the anti-Hermitian part, K, (which yields energy deposition by the waves into 
the plasma) can be calculated as a correction term. With these approximations, K is 
expressible in Cartesian coordinates (.u, J, z), locally chosen so that E A B = 0, 

A A k=xk, +zk,,, as 

K = K,,PP + K,, $3 + iK,,(%Q - 92) + K,,li, 

where 

K,, = K.,, + K.,,. 

K, , = KI,, , , + K,. , , , 

K, , = K,,, , , + K,. , , 3 

Kl l = KI,.~ l + K,. l l 1 

with the Hermitian terms given by 

K/r.., = 4,. , , = K, 

The warm plasma effects are contained in 

(4) 

(5a) 

(5b) 

(5c) 

(5d) 

(5e) 

(5f) 

(5g) 

The anti-Hermitian contributions, arising from the resonant wave particle interac- 
tion, assume the general form 

(6) 
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In the parallel direction, the electron interaction dominates with the result 

(7) 

The reduced electron velocity distribution function f,(u,,) is defined as the zeroth 
moment of the full electron distribution F,(v) over perpendicular velocities, 

It satisfies the normalization condition 

The ions dominate the anti-Hermitian contribution perpendicular to B. Making the 
plausible assumption that the strong magnetic field isotropizes the ion distribution 
function Fi so that F,(v) --) F,(u,, u,,), the off-diagonal contributions to K, vanish. 
Then the projection of the general form, Eq. (6), onto the 2, jr plane becomes 

where 

s 

2n dcos 0 
X 

o (1-k~,o,cos8/0+i6) (8a) 

w;iiul % Z71C-L 
, k: .r & afi,i C~:~:)-~21 m”2 

i au, i [k;u~)-02]“2 (8b) 
L,l =wh1 

and where we have introduced the reduced ion distribution functionfJu.) for the 
$h species defined through 

which satisfies the normalization condition 

58 l/69/2-6 
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By comparing the results, Eqs. (7) and (8) for the electron and ion contributions 
to wave damping, we note an important difference: Only those electrons which have 
parallel velocity satisfying u,, = o/k,, exchange energy with the wave, whereas all 
ions with u, 3 o/k L interact resonantly with a single wave. The difference arises 
because, during the course of their gyromotion, described by 

with 1 an arbitrary phase, all such ions satisfy the resonance conditions w-k,. 
v,(t) = 0 twice during each gyroperiod. The interaction with a narrow spectrum of 
lower hybrid waves will therefore perturb the electron distribution function in a 
similarly narrow region of velocity space, but will affect the ion distribution 
function over a much larger region. 

Substituting Eq. (2) into Maxwell’s equations and neglecting plasma spatial 
variation and dissipation to lowest order, one obtains local solutions of the wave 
equations. Upon elimination of B in favor of E, there results 

n A (n A E)+K,.E=O (9) 

with the definition n = kc/o. Equation (9) has a nontrivial solution for E if the 
dispersion relation 

c(k, co) = In A (n A I) + K,, 1 = 0 (10) 

is satisfied. Explicitly, using Eqs. (5) in Eq. (IO), we obtain 

c(k, w)= -K,, 2 0 
2 

c n”, + CKh,,,n: + &,,(nf, - &.,)I 

x (n’ - K,. ,‘, ) + Ki,,,.(nl - K,, 1. (11) 

The extension of the local solutions Eqs. (9) and (10) to a slowly varying, weakly 
dissipative plasma is accomplished by introducing the ray coordinate r and a 
parameter s upon which both r and k are assumed to depend [ 11, 121. Then, by 
expansion of the linearized field equations in the small quantity IVkl/k* -+ 1, the 
equality (10) is maintained along the ray trajectories 

(12) 

The physical significance of the ray trajectory r[t(s)] and the streamline velocity 
V gr = dr/dr (the group velocity) is that the wave energy flux 

F = vg, U, (13) 
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convects along r. Here 

(14) 

is interpreted as the local electromagnetic wave energy density. 
In solving the Hamiltonian system of ray equations [Eq. (12)], we make explicit 

use of the toroidal axisymmetry by transforming to canonical coordinates (v, 0, $), 
with r the minor radial coordinate, 0 the poloidal angle, and 4 the toroidal angle; 
and to the conjugate momenta (k, m, n) in terms of which the wave vector becomes 

k=ik,+fi;+t$ 
(R+rHcosHj 

Since, by axisymmetry, &s/i34 = 0, the conjugate momentum n is conserved for each 
ray. The six ray equations [Eq. (12)] then reduce to [ 14, 151, 

dr aE aE 

z- I 

dk,-dE dE 

ak, ai dt -;iy :’ 
- 
ho’ 

(16) 
d6 din aE /de 
z- z=z ao> i 

which is the set we solve numerically. 
Experimentally, the power spectrum incident on the plasma, P(n,,), is specified as 

a continuous function of the parallel index, n,, = k,, c/o, by controlling the size and 
relative phasing of the elements of a slow wave launching structure [16]. We 
separate the spectral shape function S(n,,) from the magnitude P,, by writing 

where 

I dn,,S(n,,) = 1. 

Numerically, we approximate the continuous spectrum by apportioning the input 
energy flux amongst a sufhciently large number of discrete rays, each with launched 
power P, = P,S(q.i) dq, so that the powers P, vary reasonably smoothly as a 
function of ray index numberj. The power convected by each satisfies the equation 

V gr., VP, = Ilp,, 

where the (assumed small) damping decrement y (<O for a stable plasma) is 
obtained by expanding Eq. (11) about (Q, k) 

‘j’= - {E,[k(r, o), w])/(aE/ao). (18a) 
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Here 

IV. THE PARTICLE KINETIC EQUATIONS 

A. Generul Ohseruations 

Some reduction in the dimensionality of the particle kinetic equations is 
necessary to make their solution tractable. To this end, we observe: 

(1) The electron and ion collision times are short compared to characteristic 
transport times, so that the steady-state solutions of the kinetic equations are 
adequate. We qualify this by noting that we should retain time dependence in the 
electron kinetic equation if runaway production in the combined presence of an 
inductive field and rf waves is to be properly treated. However, because the produc- 
tion of only a few runaways can effectively “short out” the inductive field, we need 
only check and be sure that the electric field strength being computed is below the 
value which produces runaways. 

(2) By virtue of the strong magnetic field, we may assume axisymmetry of all 
r; about 6 = B/IB/ in velocity space, i.e., j;(v) -,/;(L:~, [I,, ). 

(3) The collisional mean-free path is typically long compared to the connec- 
tion length. Therefore, the electrons and the passing ions see an effective quasilinear 
diffusion coefficient equal to the flux surface average of the locally computed result, 
and the spatial dependence of the kinetic equations is reduced to a single (radial) 
coordinate. 

B. Electrons 

The reduced electron kinetic equation can be written 

-( > ; +(.f)+ W(,f)-t T(f). (19) 

Here B is the inductive electric field, C(J’) is the Coulomb collision operator, W(,f’) 
is the wave diffusion operator, and T(f‘) accounts for spatial transport of the 
electrons. Lacking a transport model, we replace r(,/‘) by the simple form 

WI = - “Los5 .I; (20 1 

where the loss rate vLo\, is to be associated with the experimentally determined 
particle confinement time. The wave diffusion operator is one-dimensional 

(21) 
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The quasilinear diffusion coefficient is 

(22) 

where the sum is over all intersections by all rays with the flux surface under con- 
sideration and ( ) denotes the flux surface average of the enclosed quantity. The 
required average ( 1 E, -61’ ) can be related to the power P, and the local 
polarization vector 6, = E,/IE,I, computed from Eqs. (9) and ( 17) respectively, by 
first observing that 

P, = j” dS-F,=j dSV&,, 
A Y, A* 

where the surface average covers the entire area A, of the flux surface under con- 
sideration, and then by using Eq. (14) for U,, with the result 

(lE,*612)=lv i::TA 66:Qj, !T/ i y 
where 

Q,= e/e: 
e: * (2K + &K/&u) . e,’ 

(23) 

(24) 

and i, is the normal to A Y at the point where the ,jth puncture occurs. 
Solution of the full two-dimensional (u,, , vI) Fokker-Planck equation [Eq. (19)] 

at even a single point and for a specified electric field requires considerable effort. 
Practically we are forced, without rigorous justification, to further reduction if 
kinetic effects are to be included at the transport level of description. We employ a 
one-dimensional collision operator of the form, 

(25) 

The collisional diffusion and drag coefficients are given by 

and 

respectively, where 

vc = v,qh(q), (27) 

47te4n 
V” = /I - 

m2v3 
In A, 

e Te 
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and 

h(q)= [l + (U,,/UJ] m~3,2. 

The normalization coefficient B is chosen to yield the correct value for the electrical 
conductivity in the absence of rf. It is approximately (1 + Z)/5, with Z the ion 
charge. The form Eq. (25) has several desirable properties. First, it conserves par- 
ticle number. Secondly, the solution to C(f) =0 is a Maxwellian (with thermal 
velocity uTe). Finally, the velocity dependence of the coefficients are those obtained 
by expanding the linearized collision operator for high speeds 2: ti uy,. 
Equation (25) can be “derived” [ 171 by averaging that operator over L’~. assuming 
,f has a characteristic width Au, k vTe. 

One additional point deserves discussion. Referring back to the wave diffusion 
equation, we note that the discretization of the wave spectrum has made Do,,, 
singular. We resolve this singularity, and its counterpart in the expression, Eq. (7), 
for K,,,, by introducing a small but finite width 6~ into the wave-particle resonance. 
Specifically, we replace the delta function .in Eqs. (7) and (22) with a Gaussian 

6(w-k,,v,,)~exp[-(o-k,,v,,)‘/2(6u)2]/(2?c)”’6z~. (28) 

The size of 6u is chosen large enough so that the convolving Gaussian spans several 
intervals Au,, of the finite difference velocity grid on whichf, is solved. 

C. Ions 

Proceeding by analogy with the electron case, we treat the ion kinetic effects by 
averaging the full two-dimensional equation over u,,, assuming a characteristic 
parallel velocity u , , - u T,, . We obtain, for vTe 9 vI b v~,,, 

where, in this limit [18], 

The sum is over all singly charged ion species j, each of density n, and mass mj. The 
quasilinear diffusion coefficient consistent with the wave-particle interaction dis- 
cussed in Section III and used to compute the ion damping is 

DQL,i(u,) = 

i 

+ (G, A 6)(k, A 6)*(&u: - o’)“‘(~,,~v~)~~]: Qj if u1 >$ 
I 

0 otherwise. 

(31) 
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The first term results principally from the slow wave and the second from the fast 
wave. The sum is again over all punctures j of the flux surface !I? 

Equation (29) can be directly integrated. Prescribing the boundary condition that 
the velocity space flux vanishes and that f, reduces to the bulk Maxwellian at small 
u, for which Qj = 0, and therefore, DQL,i = 0, we obtain f = f,,O, where 

Because DQL,; is nonzero for all vI > w/k,, this solution typically contains an ion 
tail which extends to unphysically high energies. In a tokamak one expects that for 
velocities above some velocity ~~~~~ the ion orbits are unconfined, effectively trun- 
cating the distribution at that velocity. Schuss has investigated the effects of loss 
due to trapping in toroidal ripples in the magnetic field strength [ 191. We consider 
here the simpler case of an axisymmetric tokamak. We assume that the principal 
limitation on the confinement of very high energy trapped ions is that their banana 
width becomes large enough that they impact the limiter. 

The calculation of the loss velocity can be done analytically [20, 213. Because of 
the assumed axisymmetry, the canonical angular momentum 

p)=rnR’$+! 4 RA, z mRvl, +; RA, (33) 
C 

is conserved. Here A, is the 6 component of the magnetic vector potential, i.e., B = 
V A A, and R = R, + Y cos 8 with R, the tokamak major radius. For a small aspect 
ratio tokamak, we have, to the required accuracy, 

B=$ [bI,(r)+iji~,], (34) 

with B, a constant. This form is generated by the vector potential 

(35) 

Combining p, with the two additional constants of the motion, the energy T= 
(0: + $,)/2 and the magnetic moment CL= u:/B, yields a relation for the perpen- 
dicular loss speed uLoSS above which ions of a given u,, injected at 8 = 0, R = R, + Y 
will impact the limiter at R, = R + a on their banana excursion. The result is 
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FIG. 6. Absorption P, due to hydrogen minority as compared to the sum P,,,, of electron and ion 
absorption versus line average density 6,. for 10% (0) and 25% (0) minority concentration and for 
10% concentration with rt _,,,, + 2rr,,\, (x). Other parameters: The same as for Fig. I, except 
P,r=2OOkW, n,(u)=O.l ,n,(O), max S(n,I) at n,,=2, dn,,,wn,=l. 

centage of the total absorbed power which was absorbed by the hydrogen ions for 
average electron densities between 0.7 and 1 x 1O’j cm-j. When the hydrogen ions 
are absorbing greater than 50% of the power, current drive is strongly affected. 
This occurs for 25 % hydrogen at densities greater than -0.9 x 1013 cm 3, and is 
consistent with the experiments. For 10% hydrogen only -20% is absorbed by the 
hydrogen ions at 1 x lOI cmP3. These results are for a plasma current of 200 kA. 
The absorption by hydrogen is strongly affected by the value of uLoSS, Eq. (36) 
which depends on the plasma current through the poloidal magnetic field. Rather 
than change the current which also affects absorption through changes in ray tra- 
jectories, we explore the effect of doubling uLors as calculated at each radial point 
from Eq. (36). This also explores the question as to whether or not at a given 
current, ion banana losses are reduced by other effects such as collisions. The result 

FIG. 7. Level curves of minority hydrogen distribution function /;(al, I), showing quasilinear tail 
associated with absorption, The loss velocity vLor, used in boundary condition Eq. (39) is computed from 
Eq. (36). Parameters: nHjdroyen = 0.1 n.,,,,,,,,,, n,(O) = 1.35. 10” cm -‘, otherwise as in Fig. 6. 
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FIG. 8. Same as Fig. 7 except that uLos, is double the value given by Eq. (36). 

for 10 % hydrogen is given in Fig. 6, where one observes that greater than 50 % of 
the power goes to ions for densities greater than -0.9 x 1Or3 cm p3. The effect of 
changing vLoSS is clearly seen in Figs. 7 and 8, where contours of the ion distribution 
as a function of perpendicular velocity and radius are given. Note that as uLoSS 
increases, the tail extends out to larger velocity and increases in size. We conclude 
that if there is a 25% hydrogen ion fraction (or if there is less hydrogen that is bet- 
ter contained than that calculated by our simple banana losses model), the minority 
hydrogen ions can play a role in explaining the observed density limit on PLT. 

VII. CONCLUSIONS 

We have described a lower hybrid modeling code, LHMOD, which solves the 
tightly coupled equations of lower hybrid heating and current drive in a toroidal 
plasma. In developing the code, we have attempted to balance the need to treat 
each physical process in sufficient detail with the need to work at the transport level 
of description. The propagation of the waves is treated in the ray approximation 
with an assumed small damping decrement. (The anti-Hermitian part of the dielec- 
tric tensor is calculated as a correction term.) Quasilinear theory is required to 
calculate the damping and the resulting non-Maxwellian electron and ion velocity 
distribution functions. The kinetic effects are simplified by using one-dimensional 
collision operators for both the electrons and ions. The dominant ion loss 
mechanism is assumed to result from extended banana orbits which impact the 
limiter. Finally, the plasma current is advanced in time by an implicit scheme which 
includes a simple model of electron transport. 

The evolution of the current profile is shown for a ramp-up case on PLT 
tokamak where approximately 14% of the launched 300 kW of rf power goes into 
increasing the poloidal field. The back inductive electric field plays an important 
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role at this power level. The effect of the electric field is decreased and the fraction 
of power going into increasing the poloidal field is increased if Z,, is increased. 
Another example application of the code, to a determination of the role of minority 
hydrogen ion absorption in explaining the density limit, is discussed. 
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